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An exponential alternative to the Fulton-Gouterman 
transformation 
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80, FRG 

Received 18 June 1984 

Abstract. The Fulton-Gouterman transformation (FGT) diagonalises special electron- 
phonon systems with respect to the electronic subsystem, but the transformation operator 
cannot be written in a simple exponential form. An alternative unitary transformation, 
displaying a simple exponential form, is presented. 

1. Introduction 

Although the Fulton-Gouterman transformation (FG 1961) is somewhat exotic in its 
nature, it holds a great fascination for the electron-phonon coupling problem, since 
it allows for an exact diagonalisation with respect to the electronic subsystem, provided 
the system displays some specific mirror symmetry (which may be real or abstract). 
Originally Fulton and Gouterman (1961) devised the transformation for an electronic 
two-level system, but recently this has been generalised to N levels, provided the latter 
establish a regular representation of an Abelian group (Wagner 1984a). 

There is some indication that the FGT may acquire the status of an argumentum 
crucis for the quantum-transport problem. Quite generally the phonon-assisted quan- 
tum-transport problem may be characterised as the decay of a quasi-continuous 
sequence of oscillator states associated with one particular state 11) of the ‘light particle’ 
(electron, proton, muon, lithium, etc.) into a sequence associated with another state 
12) of the quantum particle. The basic intricacy may thus be viewed as the decay of 
an ‘initial’ continuous set of states into a final continuous set. The energy levels in 
the two sets are pairwise degenerate, whence any arbitrarily small transitive coupling 
constant necessitates a degenerate type of perturbative approach. In particular, any 
straightforward golden-rule type of calculation is not adequate. However, a simple 
and well defined calculation can be achieved if the two sequences of states are separated 
by means of a unitary transformation. For the background of the quantum-transport 
problem we refer to papers of Dick (1968, 1977), Flynn and Stoneham (1970) Shore 
and Sander (1973), Kagan and Klinger (1974), Kuhn and Wagner (1981), Junker and 
Wagner (1983) and to a forthcoming paper of the author (Wagner 1984b). 

The FGT is a unitary transformation, but it is of a form which assumes a rather 
non-simple structure if it is written as an exponential operator U = exp S. The purpose 
of the present paper is to present another unitary transformation, which has the property 
of diagonalising the electron-phonon Hamiltonian considered by Fulton and Gouter- 
man (1961) with respect to the two-level electronic subsystem, but which in addition 
displays a simple exponential form. 
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2. Notation 

For lucidity we consider the most simple representative of those Hamiltonian forms 
which may be handled by FG transformations 

H = H o s c ( P ,  Q)+DuLQu +ux(Ao+AgQg+AuuQZ)  (1) 

H o s c = & ( P i + Q i )  + f f L ( P :  + Q t )  (2) 

where H,,, is an oscillatory Hamiltonian 

with an 'odd' coordinate QU ('ungerade') and an 'even' coordinate Qg ('gerade'). We 
further employ a spin-; representation of the electronic two-level system given by 

a x  =;[l1)(ll-l2)(2ll 

u y  = f[l1)(21 +la( 113 (3) 

= ~ ~ / ~ ~ ~ ~ l ~ ~ ~ ~ l - l ~ ~ ~ ~ l l ,  
and the spin operators satisfy commutation and anticommutation relations of the form 

[ a x ,  cy]- = iu:, cycl. 

[ U X ,  cy]+ = 0, cycl. 

a; = uy = U L  =a. 
and have the further properties 

2 2  

We introduce a reflection operator JQ ('inversion') in QU-PU space with the properties 

(6) J Q Q ~  = -QUJQ JQPu = -PuJQ 

JQQg = QJQ JQpg = pdQ 
and 

J $ =  1. (7) 

(8) 

J +  - J - 1 -  
Q -  Q - J @  

This operator may be written in the explicit form 

JQ = exp[iv( P t  + Qt - f)], 

~ F , = ( ~ / ~ ) [ ~ + ~ U ~ ] ( ~ - J Q ) + ( ~ / J ~ ) [ ~ ~ + U ~ ] ( ~ + J Q )  ( 9 )  

but we will only need its properties (6).  The FG is defined by the unitary operator 

and it transforms the Hamiltonian into the form 

TFG: H =  G H U F G =  H,, ,+fDQu+u,(Ao+AgQg+AuuQZu)J~(Pu,  Q U ) .  (10) 

Considering Ao, A,, Auu as perturbation parameters the zero-order eigenfunctions of 
the transformed Hamiltonian read 

(11)  (O,FG) E U +  +(OiFG) G f i z i m ,  TFG: +!~*i ,~ , ,~ ,  FG +2,m,,mu = 1 * ; > @ E : ( Q g ) @ ' l n 0 l ( Q u  + D / 2 )  

where @.',O'(Q) is the harmonic oscillator eigenfunction and l i t)  are the two spin 
statevectors. Inverting equation ( 1  1 )  we have for the original zero-order eigenfunctions 

(l/h)@E:(Qg)[l + f ) @ ' l n O 1 ( Q U  +D/2)*(-1)"uI-f)@'ln01(Qu - 0 / 2 ) 1  (12) (0,FG) = 
**$,mg,mu 
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where the property 

JQ@.',"~( Q, 1- D/2)  = (- 1 ) Q, - 0 / 2 )  

has been employed. From equation (12) we observe that the 'natural' zero-order 
wavefunctions of the FG-transformed Hamiltonian (10) turn out to be the properly 
symmetrised (which is parity ordered) zero-order wavefunctions of the original Hamil- 
tonian and thus may be used as a base for non-degenerate perturbation theory. 

3. Alternative transformation 

We now discuss a transformation of the form 

which may also be written in the non-exponential form 

U = ( l / h ) (  1 +2iUJQ) 

where J ,  is the reflection operator as defined by equations ( 6 ) .  We evaluate the 
transformation properties of U by summing up the commutator expansion 

T :  A U'A U = A +[A, SI + ( 1/2!)[[A, SI, SI + . . . (15) 
The basic commutators read 

[U,, SI= ( . r / 2 b J ,  

l u x ,  SI = -(.r/2)UzJ, 

[CL, SI= i.ruyQuJ~ 

[QUJe S1=i57uyQ 

from which the respective commutator series are easily found to be 

whence the transformed Hamiltonian (1) assumes the form 

T :  H = H o s c + D ~ , Q , - ~ , ( A g + A g Q g  + A u u Q ~ ) J ~ ( P u ,  QUI (18) 

which again is seen to be diagonal with respect to the two-level subsystem (pseudo-spin 
system), but the diagonality is of a different make from the one established by the 
FGT. Specifically, the oscillatory displacement term Du,Qll may now have positive and 
negative prefactors * D/2 for uz = * t f .  Thus for A, = Ag = A,, = 0 the eigenvectors of 
the transformed Hamiltonian (18) read 
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whence the correct original eigenfunctions must be taken as 
(0) - -(o) 

**&,memu = U**;,m,m. 

= ( l/jz)@::( Qg)[l * t>@.’,”1( 0, * 9 * I * t>(- 1) “U@%:( QU * $11 (20) 

which again is the basis (12), as expected, but it is now the uz = +$ states of T :  H 
which denote the ‘odd’ parity states and the uz = -; states pertain to ‘even’ parity, 
whereas in the FG case (see (12)) the association is the other way around. 

4. Generalisation 

As in the Fulton-Gouterman case the presented transformation is easily generalised 
to the multimode case 

U = e ,  s S = i( n /2)ug0 
(211 

and the most general Hamiltonian which may be brought to diagonal form with respect 
to the spin operators reads ( p  = U, g )  

H =  c % , k [ P $ + Q $ l + 8 A ( Q I  P)+(J&(Q, P ) J Q ) ]  
P .  k 

+ a z [ A ( Q ,  P)-(J&(Q, P)JQ)I 

+ ‘ x [ B ( Q ,  P)+(JQB(Q,  P)JQ) l  
+ i u ~ [ ~ ( Q ,  P)-(JQB(Q, P ) J Q ) l  (22) 

A + =  A, J Q N Q ,  P )  = NQ, P ) + J ,  (23) 

where A ( Q ,  P )  and B(Q, P )  are arbitrary functions of Q p k ,  P p k ,  but such that 

This is just the same as in the FG case and for details we refer to the earlier paper of 
the author (Wagner 1984a). The generalised transformation properties read 

T :  U, E u J ~  

T :  F,(P, 0) = F,(P, Q ) ,  

T :  U, = T :  ay = U,, 

T :  F, (P ,  Q )  = 2iuyF, (P ,  Q )  J ,  
where Fg and F, respectively is an ‘even’ or an ‘odd’ function of Qpk, P p k ,  

(24) 

J4Fg = F d a  JQF, = - FuJQ (25) 

5. Conclusion 

We have learned that in the Fulton-Gouterman approach the U, =; zero-order 
wavefunctions (see equation (12)) are associated with the even parity functions in the 
original frame, whereas in our transformation uz =I associates with the odd parity 
original zero-order functions (see equation (20)). Since there are only two spin-levels 
as well as two irreducible representations of the inversion group, one may conclude 
that the FG transformation and ours constitute the only two transformations which 
diagonalise the Hamiltonian with respect to the spin subsystem. 



An exponential alternative to the FG transformation 3413 

If one has an N-level subsystem which is coupled to an oscillatory system, and if 
the N levels establish a regular representation of an Abelian group, it has been shown 
earlier (Wagner 1984a) that a generalisation of the FGT can be found which again 
diagonalises the Hamiltonian with respect to the N-level subsystem. In this case also 
alternative transformations may be devised in the spirit of the above development. 
Accordingly any zero-order sequence of oscillatory states associated with a definite 
level lu) of the N-level subsystem in the transformed frame may be associated with 
any of the N-irreducible representations of the original frame, and one may thus expect 
N !  unitary transformations which accomplish a diagonalisation with respect to the 
N-level subsystem. But it is not yet known whether any of these may be written in a 
simple exponential form. 
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